台上的埃弗顿教授自然更没想到,他下意识的看了眼乔喻旁边的潘敬元。
丹尼斯教授曾经跟他介绍过这个学生,所以他自然是认识的。
昨天晚上他还邀请潘敬元一起探讨过关于他跟导师证明过程的一些想法。
他不太想得通,为什么潘敬元身边这个年轻的孩子,突然站起来说出了这么一番话来。
这位潘教授此时的表情也的确很古怪……
不过没有看他,而是呆呆的看着站在旁边的乔喻。
埃弗顿教授目光落到了乔喻身上,想了想后,说道:“我可以接受你的道歉,但你得用刚才你想到的内容说服我。如果你能让我认为这个想法的确很棒,我不但愿意原谅你,甚至还要感谢你让我这次讲座有了一些不一样的价值。”
乔喻下意识的扭头看了眼同坐在第一排的师爷爷。
袁老先是瞪了他一眼,然后微不可查的点了点头,乔喻便不客气了,立刻开口说道:“好的,埃弗顿教授,我是这么想的,首先我们假设……”
埃弗顿冲着乔喻招了招手,说道:“孩子,站在下面讲述自己的想法可不够礼貌,上来吧,到台上来讲。我想你的大脑肯定没帮你准备PPT,所以……”
说着,埃弗顿回头看了一眼,然后笑了:“这里正好还有黑板。”
大佬都这么说了,师爷爷也首肯了,胆子从来都不小的乔喻立刻离开了座位,走到了讲台上。
正好脑子里的东西有点乱,可以借助讲解,缕清思路。
“各位老师们,我是这么想的,首先假设一种代数簇的奇异点类型,嗯,这种奇异点跟我们已知的奇异结构,比如尖点、结点,又或者锥状奇异点不太一样,在全局上具有一种复杂的脊络状扩展。
重点是同时其局部几何结构与代数簇中远端的其它点,甚至是非相邻的奇异点存在共轭关系。所以呢,首先我们要定义它的局部表现。假设在A3又或者一个更高维的几何空间中,它的特征方程应该为……”
说着,乔喻在拿起粉笔在黑板上写下了一行方程式:“f(x,y,z)=z^2x^3y^2+sin(xyz)”。
写完之后,乔喻退了一步,在心底默默计算了片刻,然后继续说道:“相信大家都已经看出来了,该方程在点(0,0,0)附近某个位置存在局部脊状极限结构。”
“嗯,其共轭关系就表现在当代数簇上的奇异点,设为P1跟P2,分别具有局部脊状奇异点结构时,它们的局部几何性质通过一种非线性同调映射相互影响。
显然这就意味着奇异点 P1的局部模结构会依赖于另一个远端奇异点 P2的局部性质。注意了,这种共轭关系是绝对无法通过简单的局部几何观察推断的……”
说到这里,乔喻的声音戛然而止……
台下同样寂静无声,但反应各异。
有人已经皱着眉头拿起纸笔,开始在随身带着的稿纸上计算;有人则依然在认真的听着;还有人依然愕然状,看着事态的发展。
不过台上的埃弗顿倒是盯着乔喻写下的方程式,看得津津有味。
至于台下的潘敬元绝对是眉头皱得最深的那个,作为现场对那一系列论文最为熟悉的人,他隐约已经猜到了乔喻的大概思路,但他还没想出到底乔喻到底会用什么方法破局。
本章未完,请点击下一页继续阅读